Skip to main content
Log in

How sedge meadow soils, microtopography, and vegetation respond to Sedimentation

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

The expansion of urban and agricultural activities in watersheds of the Midwestern USA facilitates the conversion of species-rich sedge meadows to stands of Phalaris arundinacea and Typha spp. We document the role of sediment accumulation in this process based on field surveys of three sedge meadows dominated by Carex stricta, their adjacent Phalaris or Typha stands, and transitions from Carex to these invasive species. The complex microtopography of Carex tussocks facilitates the occurrence of other native species. Tussock surface area and species richness were positively correlated in two marshes (r2=0.57 and 0.41); on average, a 33-cm-tall tussock supported 7.6 species. Phalaris also grew in tussock form in wetter areas but did not support native species. We found an average of 10.5 Carex tussocks per 10-m transect, but only 3.5 Phalaris tussocks. Microtopographic relief, determined with a high-precision GPS, measured 11% greater in Carex meadows than Phalaris stands. Inflowing sediments reduced microtopographic variation and surface area for native species. We calculated a loss of one species per 1000 cm2 of lost tussock surface area, and loss of 1.2 species for every 10-cm addition of sediment over the sedge meadow surface. Alluvium overlying the sedge meadow soil had a smaller proportion of organic matter content and higher dry bulk density than the buried histic materials. We conclude that sedimentation contributes to the loss of native species in remnant wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allsup, M.. 1977. Greene Prairie: a model for prairie restoration. M. S. Thesis. University of Wisconsin, Madison, WI, USA.

    Google Scholar 

  • Andreas, B. K. and R. W. Lichvar. 1995. Floristic index for establishing assessment standards: a case study for northern Ohio. U. S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS, USA. Technical Report WRP-DE-8.

    Google Scholar 

  • Andrus R. E., D. J. Wagner, and J. E. Titus. 1983. Vertical zonation of Sphagnum mosses along hummock—hollow gradients. Canadian Journal of Botany 61:3128–3139.

    Article  Google Scholar 

  • Apfelbaum, S. I., and C. E. Sams. 1987. Ecology and control of reed canary grass (Phalaris arundinacea L.). Natural Areas Journal 1:69–72.

    Google Scholar 

  • Ashworth, S. M.. 1997. Comparison between restored and reference sedge meadow wetlands in south-central Wisconsin. Wetlands 17:518–527.

    Article  Google Scholar 

  • Bedford, B. L., E. H. Zimmerman, and J. H. Zimmerman. 1974. Wetlands of Dane County, Wisconsin. Wisconsin Department of Natural Resources. Madison, WI, USA.

    Google Scholar 

  • Bernard, J. B., and T. E. Lauve. 1995. A comparison of growth and nutrient uptake in Phalaris arundinacea L. growing in a wetland and a constructed bed receiving landfill leachate. Wetlands 15:176–182.

    Article  Google Scholar 

  • Bledsoe, B. P., and T. H. Shear. 2000. Vegetation along hydrologic and edaphic gradients in a North Carolina coastal plain creek bottom and implications for restorations. Wetlands 20:126–147.

    Article  Google Scholar 

  • Blewett, T. J. 1981. An ordination study of plant species ecology in the Arboretum prairies. M. S. Thesis. University of Wisconsin, Madison, WI, USA.

    Google Scholar 

  • Boto, K. G., and W. H. Patrick. 1978. Role of wetlands in the removal of suspended sediments. p. 479–489. In P. E. Greeson, J. R. Clark and J. E. Clark (eds.) Wetland Functions and Values: the State of our Understanding. American Water Resources Association. Minneapolis, MN, USA.

    Google Scholar 

  • Braunschweig, M. A. and N. Hirabayashi. 2000. Soils and History of the North Branch of Pheasant Branch. Institute for Environmental Studies, University of Wisconsin, Madison, WI, USA.

    Google Scholar 

  • Chimner, R. A. and J. B. Hart. 1996. Hydrology and microtopography effects on northern white-cedar regeneration in Michigan’s Upper Peninsula. Canadian Journal of Forest Research 26:389–393.

    Article  Google Scholar 

  • Costello, D. F. 1936. Tussock meadows. Botanical Gazette 97:610–648.

    Article  Google Scholar 

  • Council on Soil Testing and Plant Analysis. 1992. Handbook on reference methods for soil analysis. Soil and Plant Analysis Council, Inc., Athens, GA, USA.

    Google Scholar 

  • Craft, C. B., J. Reader, J. N. Sacco, and S. W. Broome. 1999. Twenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) marshes. Ecological Applications 9:1405–1419.

    Article  Google Scholar 

  • Craft, C. B. and W. P. Casey. 2000. Sediment and nutrient accumulation in floodplain and depressional wetlands of Georgia. Wetlands 20:323–332.

    Article  Google Scholar 

  • Curtis, J. T. 1959. Vegetation of Wisconsin. University of Wisconsin Press, Madison, WI, USA.

    Google Scholar 

  • Ehrenfeld, J. G. 1995a. Microsite differences and surface substrate characteristics in Chamaecyparis swamps of the New Jersey Pinelands. Wetlands 15:183–189.

    Google Scholar 

  • Ehrenfeld, J. G. 1995b. Microtopography and vegetation in Atlantic white cedar swamps: the effects of natural disturbances. Canadian Journal of Botany 73:474–484.

    Article  Google Scholar 

  • Ehrenfeld, J. G. and J. P. Schneider. 1991. Chamaecyparis thyoides wetlands and suburbanization: effects on hydrology, water quantity, and plant community composition. Journal of Applied Ecology 28:467–490.

    Article  Google Scholar 

  • U. S. Environmental Protection Agency (EPA). 1993. Natural wetlands and urban stormwater: potential impacts and management. U.S. EPA Office of Wetlands, Oceans and Watersheds, Wetlands Division, Washington, DC, USA.

    Google Scholar 

  • Ewing, K. 1996. Tolerance of four wetland species to flooding and sediment deposition. Environmental and Experimental Botany 36:131–146.

    Article  Google Scholar 

  • Gauch, H. G., Jr. 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Galatowitsch, S. M., D. C. Whited, R. Lehtinen, J. Husveth, and K. Schik. 2000. The vegetation of wet meadows in relation to their land-use. Environmental Monitoring and Assessment 60:121–144.

    Article  Google Scholar 

  • Glocker, C. and R. Patzer. 1978. Soil survey of Dane County. Wisconsin. Department of Agriculture, Soil Conservation Service. Washington, DC, USA.

    Google Scholar 

  • Herman, K. D., L. A. Maters, M. R. Penskar, A. A. Reznicek, G. S. Wilhelm, and W. W. Brodowicz. 1996. Floristic quality assessment with wetland categories and computer application programs for the state of Michigan. Michigan Department of Natural Resources, Wildlife Division, Natural Heritage Program, Lansing, MI, USA.

    Google Scholar 

  • Hobbs, R. J.. 1989. The nature and effects of disturbance relative to invasions. p. 389–406. In J. A. Drake and H. A. Mooney (eds.) Biological Invasions: a Global Perspective. SCOPE 37. John Wiley and Sons, Chichester, UK.

    Google Scholar 

  • Hunt, R. J., J. F. Walker, and D. P. Krabbenhoft. 1999. Characterizing hydrology and the importance of ground-water discharge in natural and constructed wetlands. Wetlands 19:458–472.

    Article  Google Scholar 

  • Hupp, C. R. and D. E. Bazemore. 1993. Temporal and spatial patterns of wetland sedimentation, west Tennessee. Journal of Hydrology 141:179–196.

    Article  Google Scholar 

  • Johnston, C. A., G. B. Lee, and F. W. Madison. 1984. The stratigraphy and composition of a lakeside wetland. Soil Science Society of America Journal 48:347–354.

    Article  CAS  Google Scholar 

  • Jurik, T., S. Wang, and A. van der Valk. 1994. Effects of sediment load on seedling emergence from wetland seek banks. Wetlands 14:159–165.

    Article  Google Scholar 

  • Kadlec, R. H., and R. L. Knight. 1996. Treatment Wetlands. Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  • Keddy, P. A. and P. Constabel 1986. Germination of ten shoreline plants in relation to seed size, soil particle size, and water level: an experimental study. Journal of Ecology 74:133–141.

    Article  Google Scholar 

  • Kelling, K. A., E. E. Schulte, L. G. Bundy, S. M. Combs, and J. B. Peters. 1991. Soil Test Recommendations for Field, Vegetable and Fruit Crops. Agricultural Bulletin, University of Wisconsin Extension, Madison, WI, USA.

    Google Scholar 

  • Kirk E. (ed.). 1990. Urban Wetlands in the Yahara-Monona Watershed: Functional Classification and Management Alternatives. Institute for Environmental Studies, University of Wisconsin, Madison, WI, USA.

    Google Scholar 

  • Kline, V., 1992. University of Wisconsin Arboretum Long Range Management Plan. University of Wisconsin, Madison, WI, USA.

    Google Scholar 

  • Leck, M. 1996. Relationship between seeds, soil seed bank dynamics and establishment requires understanding of factors that control germination. Bulletin of Torrey Botanical Club 123:48–67.

    Article  Google Scholar 

  • Levine, J. M. 2000. Species diversity and biological invasions: relating local process to community pattern. Science 288:852–854.

    Article  CAS  PubMed  Google Scholar 

  • Lindig-Cisneros, R., and J. B. Zedler. 2001. Effects of light on seed germination in Phalaris arundinacea L. (reed canary grass). Plant Ecology 155:75–78.

    Article  Google Scholar 

  • Lindig-Cisneros, R. and J. B. Zedler. In press. Species-rich canopies limit the germination microsites for Phalaris arundinacea L. Oecologia.

  • MacArthur, R. H., and E. O. Wilson. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • MacDonald, I. A., L. L. Loope, M. B. Usher, and O. Hamann. 1989. Wildlife conservation and the invasion of nature reserves by introduced species: a Global Perspective. p. 215–256. In J. A. Drake and H. A. Mooney (eds.) Biological Invasions: a Global Perspective. SCOPE 37. John Wiley and Sons, Chichester, UK.

    Google Scholar 

  • Martin, D. B. and W. A. Hartman. 1987. The effect of cultivation on sediment composition and deposition in prairie pothole wetlands. Water, Air, and Soil Pollution 34:45–53.

    Article  CAS  Google Scholar 

  • Maurer, D. A. and J. B. Zedler. 2002. Differential invasion of a wetland grass explained by tests of nutrients and light availability on establishment and clonal growth. Oecologia 131:279–288.

    Article  Google Scholar 

  • McKinzie, W. E. 1974. Criteria used in soil taxonomy to classify organic soils. p. 1–10. In A. R. Aandahl, S. W. Buol, D. E. Hill, H. H. Bailey, M. Stelly, and R. C. Dinauer (eds.) Histosols: Their Characteristics, Classification, and Use. SSSA Special Publication Series no. 6. Soil Science Society of America, Inc., Madison, WI, USA.

    Google Scholar 

  • Minitab 11 for Windows. 1996. http://www.minitab.com

  • Mitsch, W. J. and J. G. Gosselink. 1993. Wetlands, second edition. Van Nostrand Reinhold, New York, NY, USA.

    Google Scholar 

  • Mitsch, W. J. 1994. The nonpoint source pollution control funciton of natural and constructed riparian wetlands. p. 531–362. In W. J. Mitsch (ed.) Global Wetlands: Old World and New. Elsevier Science B. V.. Amsterdam, The Netherlands.

    Google Scholar 

  • Owen, C. R. 1999. Hydrology and history: land use changes and ecological responses in an urban wetland. Wetlands Ecology and Management 6:209–219.

    Article  Google Scholar 

  • Patrick, W. H., R. P. Gambrell, S. P. Faulkner. 1996. Redox measurements of soils. p. 1225–1273. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Foltanpour, M. A. Tabatabai, C. T. Johnston, M. E. Summer, J. M. Bartels, and J. M. Bingham (eds.) Methods of Soil Analysis. Part 3. Chemical Methods. Series 5. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA.

    Google Scholar 

  • Reed, D. M., J. H. Reimer, and J. A. Schwarzmeier. 1977. Some observations on the relationship of floodplain siltation to reed canary grass abundance. p. 99–107. In C. DeWitt and E. Soloway (eds.) Wetlands Ecology, Values, and Impacts: Proceedings of the Waubesa Conference on Wetlands. Institute for Environmental Studies, University of Wisconsin, Madison, WI, USA.

    Google Scholar 

  • Reinartz, J. A., and E. L. Warne. 1993. Development of vegetation in small created wetlands in southeastern Wisconsin. Wetlands 13:153–164.

    Article  Google Scholar 

  • Richardson, J. L. and F. D. Hole. 1978. Influence of vegetation on water repellency in selected western Wisconsin soils. Soil Science Society of America Journal 42:465–467.

    Article  Google Scholar 

  • SAS version eight. 1999. SAS Institute Inc., Cary, NC, USA.

  • Sanchez-Carrillo, S., M. Alvarez-Cobelas, and D. G. Angeler. 2001. Sedimentation in the semi-arid freshwater wetland Las Tablas de Daimiel (Spain). Wetlands 21:112–124.

    Article  Google Scholar 

  • Schlesinger, W. H., 1978. On the relative dominance of shrubs in Okefenokee Swamp. American Naturalist 112:949–954.

    Article  Google Scholar 

  • Schoeneberger, P. J., D. A. Wysocki, E. C. Benham, and W. D. Broderson. 1998. Field Book for Describing and Sampling Soils. version 1.1. http://www.statlab.iastate.edu/soils/nssc/field_gd/field_gd.htm. National Soil Survey Center, Natural Resources Conservation Service, US Department of Agriculture, Lincoln, NE, USA.

  • Schwartzendruber, D., M. J. De Boodt, and D. Kirkham. 1954. Capillary intake rate of water and soil structure. Soil Science Society of America Proceedings 18:1–7.

    Google Scholar 

  • Skaggs, R. L., D. Amatya, R. O. Evans, and J. E. Parsons. 1994. Characterization and evaluation of proposed hydrologic criteria for wetlands. Journal of Soil and Water Conservation 49:501–510.

    Google Scholar 

  • Stout, A. B. 1914 A biological and statistical analysis of the vegetation of a typical wild hay meadow. Wisconsin Academy of Sciences, Arts, and Letters: 405–469.

  • Swink, F. and G. Wilhelm. 1994. Plants of the Chicago Region, fourth edition. Indiana Academy of Science, Indianapolis, IN, USA.

    Google Scholar 

  • Taft, J. B., G. S. Wilhelm, D. M. Ladd, and L. A. Masters. 1997. Floristic quality assessment for vegetation in Illinois, a method for assessing vegetation integrity. Erigenia 15:3–23.

    Google Scholar 

  • Titus, J. H., 1990. Microtopography and woody plant regeneration in a hardwood floodplain swamp in Florida. Bulletin of the Torrey Botanical Club 117:429–437.

    Article  Google Scholar 

  • Vargo, S. M., R. K. Neely, and S. M. Kirkwood. 1998. Emergent plant decomposition and sedimentation: response to sediments varying in texture, phosphorous content and frequency of deposition. Environmental and Experimental Botany 40:43–58.

    Article  Google Scholar 

  • van der Valk, A. G., S. D. Swanson, and R. F. Nuss. 1983. The responses of plant species to burial in three types of Alaskan wetlands. Canadian Journal of Botany 61:1150–1164.

    Article  Google Scholar 

  • van der Valk, A. G., T. L. Bremholm, and E. Gordon. 1999. The restoration of sedge meadows: seed viability, seed germination requirements, and seedling growth of Carex species. Wetlands 19:756–764.

    Article  Google Scholar 

  • Veltman, R. L. 2001. The effects of hydroperiod variability on floristic diversity in created wetlands adjacent to the Des Plaines River, IL. Institute for Environmental Studies, University of Wisconsin, Madison, WI, USA.

    Google Scholar 

  • Vitousek, P. M., 1990. Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57:7–13.

    Article  Google Scholar 

  • Vivian-Smith, G. 1997. Microtopographic heretogeneity and floristic diversity in experimental wetland communities. Journal of Ecology 85:71–82.

    Article  Google Scholar 

  • Volker, R., and S. G. Smith. 1965. Changes in the aquatic vascular flora of Lake East Okoboji in historic times. Iowa Academy of Science 72:65–72.

    Google Scholar 

  • Waschbusch, R. J., W. R. Selbig, and R. T. Bannerman. 1999. Sources of phosphorus in street dirt from two urban residential basins in Madison, Wisconsin, 1994–5. U.S. Geological Survey. Water-Resources Investigations Report 99-4021.

    Google Scholar 

  • Watt, A. S. 1947. Pattern and process in the plant community. Journal of Ecology 35:1–22.

    Article  Google Scholar 

  • Werner, K. J. 2001. Stormwater sedimentation alters soils and microtopography and facilitates invasive plants in sedge meadows of southern Wisconsin. Master’s Thesis. University of Wisconsin, Madison, WI, USA.

    Google Scholar 

  • Wetzel, P. R., and A. G. van der Valk. 1998. Effects of nutrient and soil moisture on competition between Carex stricta, Phalaris arundinacea, and Typha latifolia. Plant Ecology 138:179–190

    Article  Google Scholar 

  • Woo, I., 2000. Can nutrients alone shift a sedge meadow towards the invasive Typha X glauca. M. S. Thesis University of Wisconsin, Madison, WI, USA.

    Google Scholar 

  • Zedler, J. B. 2000. (ed.) Adaptive Restoration of Lower Greene Prairie: a Baseline Study and Recommendations. Arboretum, University of Wisconsin, Madison, WI, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, K.J., Zedler, J.B. How sedge meadow soils, microtopography, and vegetation respond to Sedimentation. Wetlands 22, 451–466 (2002). https://doi.org/10.1672/0277-5212(2002)022[0451:HSMSMA]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2002)022[0451:HSMSMA]2.0.CO;2

Key Words

Navigation